@ Carbon Black Linux Sensor Troubleshooting Guide

CARBON
BLACK

1 Overview

The Carbon Black Linux Sensor gathers operating-system level activity in the form of process
creations and terminations, file modifications, inbound and outbound network
communications, and module (code) loads. Additionally, metadata about an executable
module is gathered, as well as a copy of each unique executable module.

Core activity collection is accomplished via proprietary kernel modules. All administrative
overhead, including communications with the Carbon Black server, is accomplished via a

usermode service.

All gathered data is communicated with the Carbon Black Enterprise Server for storage,
indexing, and analysis.

2 Supported Linux Versions

OS Version Architecture  Additional Notes
CentOS/Red Hat Enterprise | x64 Tested mostly with kernel
Linux 6.4 2.6.32-358.18.1.el6.x86_64.

Some testing with 2.6.32-358.e16.x86_64
CentOS/Red Hat Enterprise | x64 Tested mostly with the most recent kernels
Linux 6.5 above 2.6.32-431.17.1.el6 and higher
CentOS/Red Hat Enterprise | x64 Tested with just released 2.6.32-504.¢el6
Linux 6.6

3 Carbon Black Linux Sensor Version History

Sensor Version Release Date  Additional Notes

421 GA release




4 Installation

Please see the Linux sensor install guide.

5 Uninstallation

Uninstallation can be achieved by running the following command:
/opt/cbsensor/sensoruninstall.sh

In the rare case, the sensor can be uninstalled manually, via ‘rpm -e
cbsensor’. Note that the sensor data and logs will remain.

6 Troubleshooting
6.1 General Logging
The user mode portion of the sensor creates an execution logs under
/var/log/cb/sensor/cbdaemon.INFO
This log file is a symbolic link which is recreated each time the daemon runs. The default log
level is set to WARNING. This will result in the generation of log files for WARNING and
ERROR levels:
/var/log/cb/sensor/cbdaemon.WARNING
/var/log/cb/sensor/cbdaemon.ERROR
The kernel module logs messages to /var/log/messages. Type the following command in
terminal to dump kernel messages in real time:
sudo tail -f /var/log/messages | grep CbSensor

6.2 Kernel Panic Recover

If you are experiencing kernel panics on boot, or are unable to uninstall the Carbon Black
sensor, it may be advisable to manually disable the Carbon Black sensor:

1. Boot your PC using the Centos Installation CD.
2. Atthe CD’s menu, select ‘Rescue installed system’
3. Select the defaults for all the options during the rescue wizard prompts. (select



‘Continue’ at the prompt to find and mount your Linux installation)

Select the ‘Start a shell’ option

At the shell prompt change directory to /mnt/sysimage/etc/sysconfig/modules/
Delete or rename the ‘cbsensor.modules’ file

Reboot

No Ok

6.2.2 Kernel Panic Data Collection

If you experience a panic while using the sensor, please collect the information described at
http://linkwithlinux.blogspot.com/2013/01/crash-dump-analysis-installing-and.html. Note that
you have to prepare the system for collecting crash dumps prior to the panic occurring.

6.3 Installation Verification

The following is a manifest of installed files:

Path Additional Notes

/etc/init.d/cbdaemon Sensor Daemon Script
lusr/sbin/cbdaemon Sensor Daemon Executable
/llib/modules/$(uname -r)/kernel/lib/cbsensor.ko Sensor Kernel Module
/etc/sysconfig/modules/cbsensor.modules Kernel autostart file
/var/lib/cb/config Binary store of settings file
Ivar/lib/cb/sensorsettings.ini Settings file

To verify that the sensor daemon is running issue the following command:
pidof cbdaemon

There should be exactly one pid returned.

To verify that the sensor kernel module is running issue the following command:
lsmod | grep cbsensor

The output should show 1 item if the sensor kernel module is running.

6.4 Installation Failures


http://linkwithlinux.blogspot.com/2013/01/crash-dump-analysis-installing-and.html

Installation are displayed to the screen. To check if the sensor is installed use the following
command:

rpm -qa cbsensor

If the sensor is installed, then the a single line will be displayed showing version and build
numbers:

cbsensor-v4.2.1.41002-1.x86_64

6.5 Sensor Communication History

Running inside terminal as root and sending the SIGUSR2 signal (via su):
kill -n 12 $(pidof cbdaemon)

The log can be found at /var/tmp/cb/sensor_comms.log. Each transaction has a
HRESULT (see description at closso@10.36.4.134:) which can be one of the following:

Facility number | Description Error code value

203 OS level errors Maps to errno

25 HTTP errors HTTP error code

200 Curl errors Curl error code (See CURLcode in curl.h)

201 Curl form errors | Curl form error code (See CURLFormcode in
curl.h)

6.6 Manual Sensor Daemon Start & Stop

To restart the service, open a Terminal window and type:
sudo service cbdaemon restart

To start the service, open a Terminal window and type:
sudo service cbdaemon start

To stop the service, open a Terminal window and type:

sudo service cbdaemon stop



6.7 Clear catalog of observed binaries

In order to clear the existing catalog of observed binaries, open a Terminal window and type
the following:

sudo /etc/init.d/cbdaemon stop
sudo rm -rf /var/lib/cb/store
sudo /etc/init.d/cbdaemon start
6.8 Determine Server URL
To determine the server URL used by the sensor, follow the instructions in section 6.5 to
create a communication log and dump the contents of the generated log file. The server URL
appears at the top.
6.9 Trigger an immediate checkin to the server
Running inside terminal as root and sending the SIGUSR1 signal (via su):
kill -n 10 $(pidof cbdaemon)
6.10 Configuring core dumps
Next, add the following lines to /etc/sysctl.conf
# Allow suid programs to dump core

fs.suid_dumpable = 1

# Dump core in /var/tmp
kernel.core_pattern = /var/tmp/core

Finally, reboot.

Core dumps will now be automatically placed in /var/core/ suffixed with the pid of the crashing
process.

Note: If a core file is collected for a bug report, please include the cbdaemon binary which
crashed along w/ the core file.

6.11 Manual Core File Generation
Note: this section assumes the system preparation steps have been performed as described

in the above Automatic core file generation section. To collect a core file for a live process
(for example a process with high CPU utilization or appears to be hung) issue the following



command:
sudo gcore $(pidof cbdaemon)
A core file will be generated in /var/core/ and the process will continue as normal.

Note: If a core file is collected for a bug report, please include the cbdaemon binary which
crashed along w/ the core file.

6.12 Driver Debug Parameters

Two arguments can be passed to the driver to control debug behavior:

g_tracelLevel Controls debug trace output flags
See inc/dbg.h for specific flag values

g_eventFilter Controls which event types are generated.
See CB_EVENT_FILTER *in
inc/common.h for details on specific flag
values.

These arguments can be passed either in the /etc/sysconfig/modules/cbsensor.modules file or
by issuing the command ‘sudo insmod cbsensor.ko g_traceLevel=<value>
g_eventFilter=<value>

insmod cbsensor.ko g_tracelLevel=0x00200000
or

modprobe cbsensor g_traceLevel=0x00200000

0x00200000 - is hook tracing

e #define DL_INIT 0x00000001

e #define DL_SHUTDOWN 0x00000002
e #define DL_WARNING 0x00000004
e #define DL_ERROR 0x00000008

e #define DL_INFO 0x00000010

o #define DL_REQUEST 0x00000100

e #define DL_HOOK 0x00200000

e #define DL_VERBOSE 0x08000000

e #define DL_ENTRY 0x10000000


https://www.flowdock.com/app/private/73480?filter=all&tags=define
https://www.flowdock.com/app/private/73480?filter=all&tags=define
https://www.flowdock.com/app/private/73480?filter=all&tags=define
https://www.flowdock.com/app/private/73480?filter=all&tags=define
https://www.flowdock.com/app/private/73480?filter=all&tags=define
https://www.flowdock.com/app/private/73480?filter=all&tags=define
https://www.flowdock.com/app/private/73480?filter=all&tags=define
https://www.flowdock.com/app/private/73480?filter=all&tags=define
https://www.flowdock.com/app/private/73480?filter=all&tags=define

e #define DL_EXIT 0x20000000
AN are the available levels

Just OR them together to create the log level mask that you want

6.13 Daemon Debug option

While not ideal the daemon debug level and be raised by stopping the daemon and restarting

in the following manner to get verbose logging:

/usr/sbin/cbdaemon info

6.14 Determine Sensor Version

To determine the version of cbdaemon running open a Terminal window and type:
cbdaemon -v

6.15 New Sensor INI settings

The Linux sensor has a new feature to allow the sensor to not record the process and file

operations generated by a particular user. The new option is and must be placed in the

sensorsettings.ini file and the data restarted. There is currently no way to remove the user

settings from the kernel, other than deleting the INI setting and restarting the sensor kernel.

The UsersTolgnore setting takes a list of user names separated by colons, if multiple users
are desired. The limit on users in the list is 5.

Single user:
UsersTolgnore="username1”
Multiple users:

UsersTolgnore="username1:username2”


https://www.flowdock.com/app/private/73480?filter=all&tags=define

